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COMMENT 

On exact solutions of the doubly anharmonic oscillator 

Pinaki Roy and Rajkumar Roychoudhury 
Electronics Unit, Indian Statistical Institute, Calcutta 700 035, India 

Received 18 May 1987, in final form 21 Ju ly  1987 

Abstract. It is shown that exact solutions of the doubly anharmonic oscillator in the form 
of integrals can exist if the oscillator is given a supersymmetric form and the coupling 
constants satisfy a supersymmetric constraint. 

In recent years the doubly anharmonic oscillator problem has been studied quite 
extensively (Sobelman 1979, Damburg et al 1982, 1984, Chaudhury et a1 1984). 
However, the eigenvalue equation for the doubly anharmonic oscillator is not generally 
exactly solvable and therefore exact solutions, whenever they exist, are of great interest. 
Exact solutions of this problem are of two types: solutions of the elementary type 
(Flessas 1979, Flessas and Das 1980, Khare 1981, Singh et a1 1981) and solutions 
which are represented by integrals (Flessas 1981). In a previous paper (Roy and 
Roychoudhury 1987) we have shown that new solutions (as well as old ones) which 
are of elementary character can be obtained if the problem is cast in the framework 
of supersymmetric quantum mechanics (SUSYQM). Here our purpose is to show that 
integral solutions can also be obtained within the same framework and new solutions 
can also be obtained if the superpotential is suitably chosen. 

We recall that in one dimension the Hamiltonian for a SUSYQM system is defined 
by (Cooper and Freedman 1983): 

i? I 3  H S S  = { Q+, Q }  = 

i: 3 Q = ( p + i  W )  

i: 9 Q' = ( p  - i  W )  ( 3 )  

H ,  = -ddZ/dx2+ V , ( X )  (4) 

V*( x)  = W 2 (  x) f W'( x) (5) 
where Q and Q' are called the supercharges (generators of supersymmetry transforma- 
tions) and W (  x )  is the superpotential. An important property characterising a SUSYQM 

system is that if In) is a ground state it is annihilated by the supercharges, i.e. 

Qln) = Q+/O) = 0. (6) 
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Using explicit forms of Q and Q’ it is easily found that the ground-state wavefunctions 
are of the form 

where the functions p : ( x )  are given by 

However, the states given by ( 7 )  are not both physically acceptable ground states-the 
choice between the two ground states is dictated by the normalisability of the functions 
given by (8). The important point to note here is that if a physical ground state exists 
then it is unique and supersymmetry is unbroken and the ground-state energy is 
identically zero. 

Next we have to determine for what choice of the superpotential we can have a 
doubly anharmonic oscillator. To this end, we make the following choice: 

c 2g,x 
x l = o  (1  + g , x 2 )  

W ( x )  = a x 3 +  b x + - +  go = 0. ( 9 )  

(We have chosen this superpotential because the summation term in it has the special 
feature of reproducing terms containing x2 and the rest cancels when we form V + ( x ) . )  

Let us first consider the case N = 0. In this case the scalar potential corresponding 
to the bosonic ( - )  and fermionic ( + )  sectors can be obtained from (5)  and are given 

(10) 

( 1 1 )  
Next we identify the Fermi sector, i.e. V + ( x ) ,  with the doubly anharmonic oscillator 
potential 

by 
V - ( x )  = a 2 x 6 + 2 a b x 4 +  ( b 2 + 2 u c  - 3 a ) x 2 +  c ( c  + I ) / x 2 +  (2bc - b )  

V + ( x )  = a 2 x 6 +  2abx4+ ( b 2 +  2ac+ 3 a ) x 2 +  c ( c  - l ) / x 2 +  (2bc + b ) .  

V ( x )  = f v x 6 + f h x 4 +  w2x2.  ( 1 2 )  

(Under appropriate changes of sign of the parameters one can also identify V - ( x )  
with V ( x ) . )  If V + ( x )  and V ( x )  are identical then we have 

a* ‘$77 ( 1 3 )  
2ab =;A 

b 2 + 2 u c + 3 a  = w2 

c = o ,  1 ( 1 6 )  
and the relation between the energy eigenvalues is given by 

E = E+ - b ( 2 ~ +  1 )  

(where E is the energy corresponding to V ( x )  and E+ is the energy corresponding to 
V + ( x ) ) .  From ( 1 3 ) - (  15) the supersymmetric constraint is found to be 

w ’ = 3 h 2 / 1 6 v  + ( 2 c +  1 ) ( ~ / 3 ) ” ~ .  (18)  

We now consider the following Riccati equation: 

W f ( x ) +  w ; ( x )  = W 2 ( X ) +  W ’ ( x ) .  (19) 
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A trivial solution of this equation is given by 

WI(X) = W(X) (20) 

W,(X) = W(x)+ u(x)  (21) 

and a non-trivial solution is given by (Roy and Roychoudhury 1986a) 

where 

u(x)  =exp (-2 j”  W(t)  dr) [ K + [ ”  exp (-2 {’ W(t)  dr) dy1-l 

where K is a constant of integration. 
Hence the zero-energy solution corresponding to (21) is given by 

cp;(x)-exp(j” Wl(z)dz)  = e x p ( j x ( W ( z ) + u ( z ) d z ) ) .  

Therefore for c = 0 we get 

cpoo+(x) - exp [ t ( 7 7 / 3 ) ” * ~ ~ / / 4 + ~ ( 3 / 7 7 ) ’ ~ * ~ ~ ]  

1 X ( K  +{”* z - ~ ’ *  exp [ - ; ( v / 3 ) ” * ~ * - a ( 3 / q ) ~ ~ ~ z ]  dz 

E = -$i(3/77)”’ (25) 
since E+ = 0, provided 

~’=3A~/1677+(3/77)‘’~.  (26) 

This result was previously obtained by Flessas (1981). However, before accepting this 
solution we note the following points. It is known that if SUSY is unbroken the ground 
state (of zero energy) is unique (Cooper and Freedman 1983, Roy and Roychoudhury 
1986b). Now if c = 0, then cp!(x) = exp (-j” W( t )  d t )  is normalisable and therefore 
no other ground state can exist (since in that case the ground state would be degenerate, 
which is impossible) and cp?(x) = exp (j” W( t )  d t )  and cp;((x) = exp (5” W,( t) d t )  are 
therefore not normalisable (it can also be checked explicitly). 

We now turn to the case c = 1. In this case neither of cp:(x)-exp (*j” W(t)  d t )  
are normalisable. From (23) we then have 

cp+(x)--exp 0 [-+(77/3) 1 i 2  x 4 -$A(3/a)”’x2] 
112 4 - x  exp [a(77/3) ’ x +$A(3/77)1’2x2] 

X 1‘’ z ~ ” * [ ( ~ / ~ ) ” ~ z + ~ A ( ~ / ~ ) ~ ’ ~ ]  

xexp [ - ~ ( 7 7 / 3 ) 1 ’ 2 z 2 - a A ( 3 / 7 7 ) ’ i 2 z ]  dz (27) 

(28) E =  -- :A (3/ 7 7 ) I i 2  

provided 

w ’ =  3A2/1677 + 5( ~ / 2 ) ” ~ .  (29) 

The result (27) was also obtained by Flessas (1981) and we do not repeat the arguments 
to show that cp;(x) behaves properly at x = fo;) and x = 0. 
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Next to obtain a new integral solution let us consider N = 1 in (9). Then from ( 5 )  
we have 
V+(x) = a2x6+2abx4+ ( b2+2ac+7a)x ’+  c (c  - l ) / x 2 +  (2bc+ 56 - 4 a / g , )  

+ (4a /g I  - 4 b + 2 g , + 4 ~ g l ) / ( l  +glX2). (30) 

(31) 

2ab = $ A  (32) 

b2+2ac+7a  = w 2  (33) 

4a /g l -4b+2gI (2c+1)=O (34) 

c = o ,  1 (35) 

E = E + - b ( 2 c + 5 ) + 4 a / g I .  (36) 
Now for identical reasons as before we have to reject the solution corresponding to 
c = 0. Using (21) and (22) the solution corresponding to c = 1 is found to be 

As before, comparing (30) with (12) we obtain 
2 1  a = j v  

and the relation between energy eigenvalues is 

(o:(x)-x(1+glx2) e ~ p [ $ ( 7 ) / 3 ) ” ~ x ~ + a A ( 3 / r ] )  112 x 2 ] 

1 / 2  2 x [ -x-’(l +g1x2)-2 exp[-f(17/3)1’2~4-$A(3/rl)  x 1 

provided 

We note that 

where 

x exp[ -f( 77/3)”’z -:A (3/ v)”* 

E = ;A(3/ T ) ” *  f 2[3A2/ 1617 - (317)1’2]1’2 

g, =~A((3 / r l ) ” ’*~[3A2/16r ]  - (1217)1’2]1’2 

w2=3A2/167 +(277)”>.  

the above solution, i.e. cp”,x), behaves correctly if 

1 2  
2g1, + ( 2 ( 1 7 ~ ~ ’ 1 ’ 2  + $ A  (3/ v ) l i 2 )  I, = 2(7?/3)”2 

g1 

dz 
I” = I, (1 +g,z‘)” e~p[-f(7)/3)~/~z~-$A(3/~)~/*~]. 

Equation (42) is a relation between the parameters A, r] and g and for certain values 
of the parameters this is satisfied. This equation should be compared with equation 
(14) of Flessas (1981). In this context also see the paper by Leaute and Marcilhacy 
(1986) who also obtained a transcendental equation involving the parameters in the 
case of non-polynomial solutions. 

Now if we consider N = 2 , 3 , .  . . and proceed as before we can obtain more integral 
solutions (although in these cases the equation analogous to (41) would be more 
complicated, the relations are neverthless exact and can always be tackled numerically 
to give exact solutions). 



On exact solutions of the doubly anharmonic oscillator 6601 

In conclusion we have shown that all the solutions of the doubly anharmonic 
oscillator can be obtained within a common framework and they all correspond to the 
ground state of SUSYQM systems. 
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